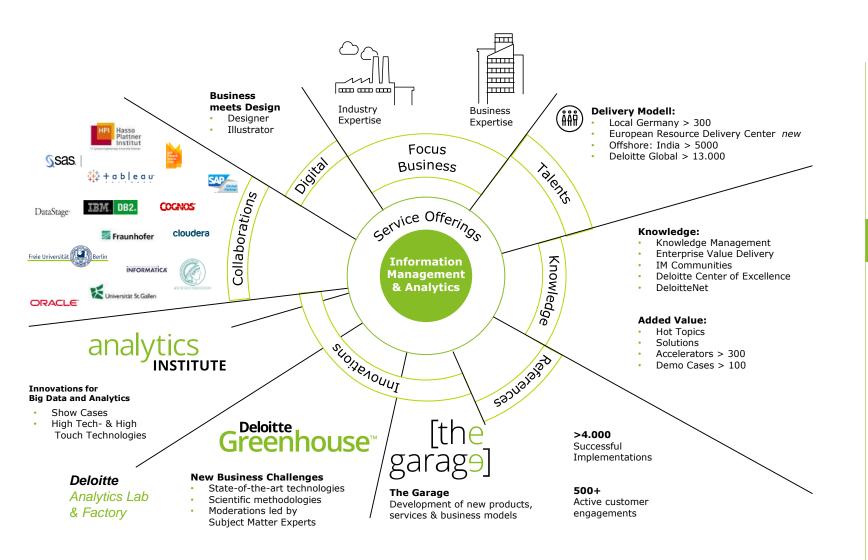
Deloitte.

Der Weg zum RPA
Center of Excellence –
Chancen und Herausforderungen


Fachhochschule Kufstein, 17.05.2019

Agenda

- 1 Introduction
- 2 Proof of Concept
- 3 Pilot
- 4 Center of Excellence
- 5 Q&A

Introduction

Deloitte | Analytics & Information Management

Deloitte. Technology

Technology Strategy & Architecture

Deloitte Digital

Analytics & Information Management

SAP

Oracle

System Integration

Application Managed Services

Cyber Risk

Deloitte Analytics global and German capabilities

Global Analytics Headcount >20,000

What robotics is | Process automation focus areas

Traditional Automation

"Background Jobs"

- In-system automation with batch jobs or manual triggered automation
- Interfaces with data transfer and background processing

Robotics

"Mimics Human Actions"

- Automation software that works with structured data across IT systems
- Used for rule-based, simple to complex (transactional) processes
- Enables faster handling time, higher volumes, reduced error rates and handling costs

Cognitive

"From Augments Human Judgement to Intelligence"

- Used for judgment based processes and interprets human behavior
- Covers machine learning capability and used for predictive decisioning
- Dynamically selfadaptable and managing

True AI

Artificial Intelligence (AI)

"Mimics Human Intelligence"

Turing Test Definition:
"A test for intelligence
in a computer,
requiring that a
human being should
be unable to
distinguish the
machine from another
human being by using
the replies to
questions put to both"

Area of Interest for Process Automation

Robotic Process Automation | Capabilities & Benefit

What is Robotics?

Robots are...

- Computer-coded software
- Programs imitating human interaction with applications
- Cross-functional and cross application macros

Robots are able to...

- Validate and analyze
- Gather and collate information
- Record data
- Calculate, decide and produce
- Orchestrate and manage
- Transport and communicate
- Report

... in appropriate processes:

- Structured and fixed inputs and outputs
- Rule-based & repetitive
- Limited human (voice) intervention
- Stable process with little exceptions and changes
- High volume or significant peaks in workload

Main benefits

Cost Reduction

Cost reduction net 30% - 60% per automated process


24/7 Operations

Non-stop performance - no queues at peak

Valuable Work

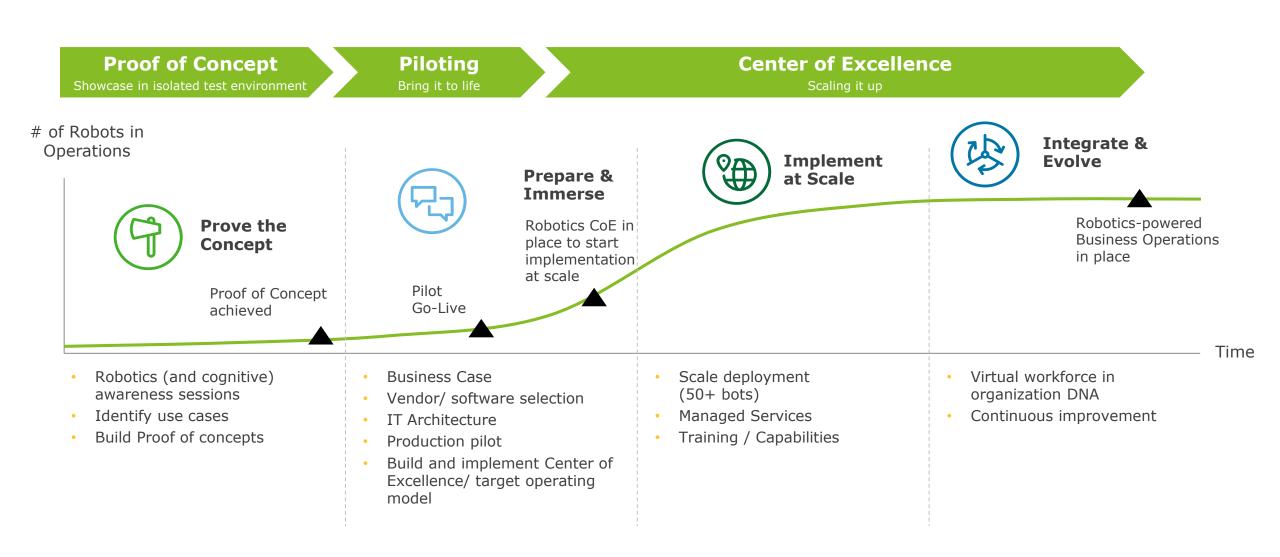
Employees do not waste any capacity for routine tasks

Quality

Increase quality by avoiding human errors and focusing on exceptions

Short Payback Period

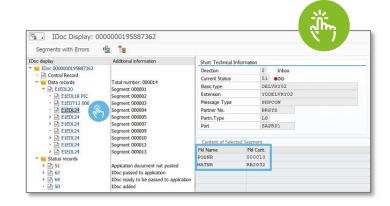
RPA implementation costs are paid off in < 12 months

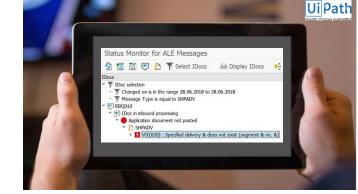

Internal Control

Avoiding human fraud, easily performed Control & Compliance checks

Speed Increase

Turn-around-time decrease (up to 80%)


Implementation roadmap | The Journey from a Proof of concept to full scale


Proof of Concept

Proof of concept | Key Deliverables

We create the following deliverables...

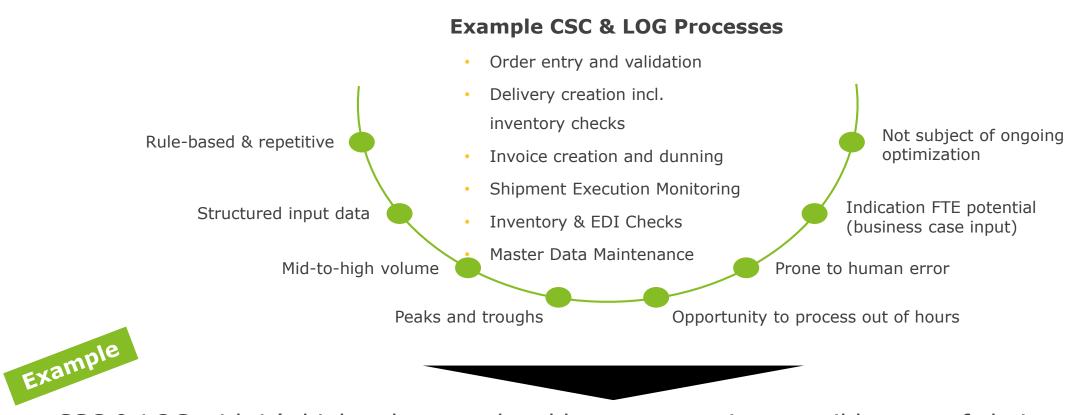
Screenshots and process description (BPP) of how the Robot should work

Live demo on RBQ and video as showcase

Key POC

Outcomes

RPA Demo


RPA
Step-by-Step
Documentation

POC Decision Paper

Scope and results of POC, business case, lessons learnt, recommendations

Proof of concept | Suitability of processes for Automation

CSC & LOG with it's high volume and stable processes, is a possible area of choice to **prove** value of process automation

These are the criteria to look for processes

Search for these...

- Routine, repetitive processes, executed at least weekly with the exact same sequence of steps
- Process depends on <u>digital structured, interpretable input</u>
 <u>data</u> which is always available in the same format
- Flow of the steps is rather straight forward <u>with few</u>
 <u>exceptions</u> or decision points
- Autonomous execution by the robot possible, no input for decisions by human required
- Process spans across <u>limited number of business</u>
 <u>applications</u> (e.g. Excel, Outlook, SAP; 3-4 max.)

Try to avoid these...

- Specialized process, carried out few times only or in many different variants
- Input for process is <u>paper-based or unstructured</u> (e.g. freetext email)
- Many nested process parts with a <u>high number of decision</u>
 <u>points</u>
- Strong human / robot interaction needed as decision criteria may not be available digitally
- <u>Large number of business applications</u> involved in process execution (more than 4)

Classification framework of Robotics process complexity

	Process Steps	Process Decisions	Steadiness	Form of Input Data	Systems	Access to Systems	Fields	No. of Hand-Offs
Description	Number of process steps (incl. number of loops)	Number of decisions (linear or complex)	How often does the process change?	What form do input data have (un-/ structured and digital / analog)?	Number of different systems	Restrictions to access systems (e.g.Citrix)	Number of fields to be filled out per process?	Number of different departments involved in the process
	Scale	Scale	Scale	Scale	Scale	Scale	Scale	Scale
Complex	>70	Complex	High frequency of changes	Unstructured / analog	>5	heavy	>20	>5
Scoring	>50	Complex (rule-based)	Often	Structured / analog	4		20	4 or 5
System	>30	Linear and complex	Medium	Both analog and digital	3	medium	15	3
Simple	<20	Linear	Rarely	Unstructured / digital	2		10	2
	<10	No decisions	No changes	Structured / digital	1	none	5	1

RPA Software vendor used

blueprism

Specialization

 SAP automation including data extraction and report generation No specialization but leader in back office

 SAP automation including data entry and content migration

 Ease of implementation due to simple architecture

Reusability through

expedite process

with robot creation and ecosystem costs

Efficiency in scaling

- Well developed training program and approach
- Highest level of control over robots

- Best-in-class integration with systems
- Ease of use with intuitive GUI and drag-and-drop process creation supported by the business

Key **Differentiators**

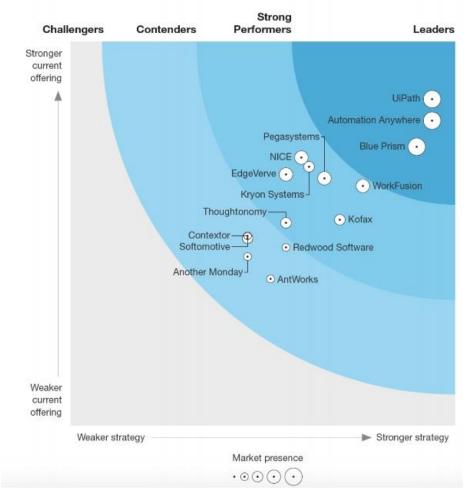
 Depth of deployment experience

creation

metabots to

To implement

simple processes


automations

immediate ROI

quickly for

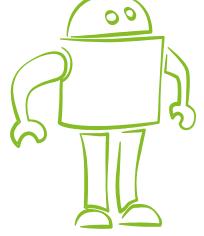
- To enable scalability and support large, enterprise automation initiatives
- For business-led process creation, integrating multiple systems, specifically SAP and **CITRIX**

The Forrester Wave – RPA - Q2/2018

Deloitte 2019

Vendors

Why Clients


Choose These

Proof of Concept lessons learned

PoC is successful from technical perspective

Implementation time is rather short (3 – 4 weeks)

PoC provides a good basis for a "Go-Live"

Pilot

Bringing it to Life – Key considerations

Scope

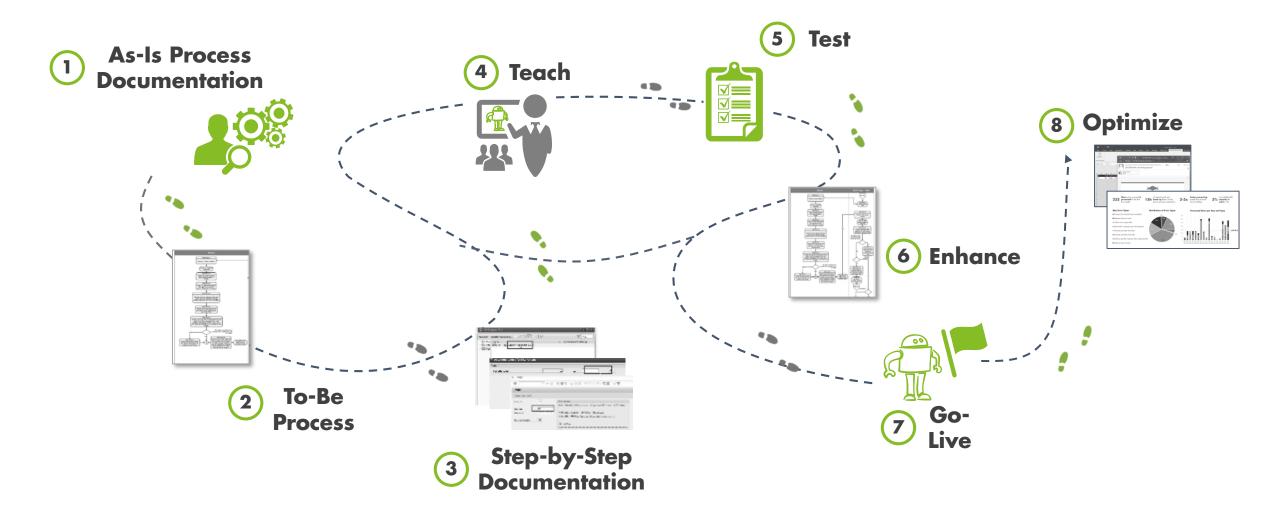
Do not start with all processes and geographies at once, piloting with subsequent use cases is more beneficial

Business Case

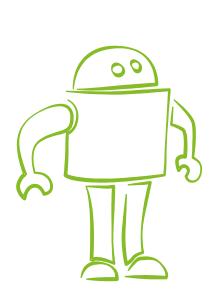
Do a proper PoC and piloting phase with a feasibility study to validate benefits before large-scale deployment

Operating Model

Ensure that the process automation operating model is designed and implemented early, e.g. along a feasibility study


Leakage

Take leakage into account and that processes cannot be fully automated / still need some manual support


Change Management

Prepare the organization for the virtual workforce and shape discussions along the process automation journey

The Journey from a manual process to an enhanced automated process

RPA Pilot lessons learned

Robotics PoC was successful from technical perspective

Noticeable business benefits after Go-Live achieved

Precise and extensive "process rule-set" required

Robust and dynamic process architecture necessary

Business involvement indispensable for implementation

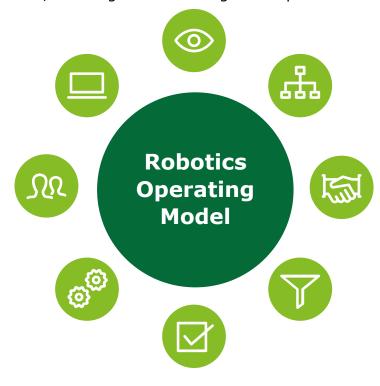
Center of Excellence

Target Operating Model

Strategy & Vision

- Defining the strategy and vision for process automation
- Identifying the expected business benefits, outlining how these align to corporate strategy and how they will be realised

Technology


 Defining a scalable, low maintenance technical environment and associated growth strategy

People

- Defining roles and responsibilities to operate efficiently
- Securing candidates for Robotics delivery, support and training roles

Service Model

- Agreeing the engagement model required to support operational processes
- Defining the management, reporting, scheduling and support model for processes for business as usual

Organization

 Defining the organisational design that best supports delivery of the RPA capability and aligns with corporate strategy and culture

Governance

 Defining the decision structure and committee structure needed to decide, execute and manage robotics

Pipeline & Benefit Model

 Defining the opportunity assessment approach and pipeline triage procedure to optimise the number of processes selected for robotics and maximise the associated business benefit

Delivery Model

- · Agreeing the Robotics delivery approach and embedding process documentation standards, templates and policies
- Defining the delivery management and tracking approach that ensures optimal usage of the defined methodology

CoE Dimension 1: Operating Model

Operating Model —

2

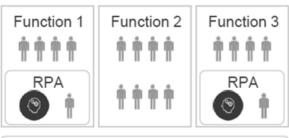
3

4

Divisional

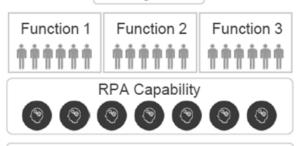
Local automations in individual functions with no/minimum dependency on other functions

Federate


Bespoke automations in multiple functions, supported by a central and standard platform when needed

Centralised

 Low cost, scalable automations across the enterprise using a central and standard platform


Shared Services (IT, HR, Finance)

Management

Shared Services (IT, HR, Finance)

Management

Shared Services (IT, HR, Finance)

CoE Dimension 2: Process Pipeline

1

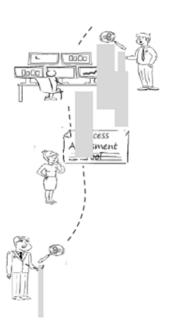
2

Process Pipeline

3

4

Push Model


- Enablement of process experts with deep functional knowledge to understand RPA requirements (ambassadors)
- Identify suitable processes on their own based on checklist criteria and propose candidates (longlist)
- Gatekeeper (RPA specialist) validates proposed candidates (shortlist)
- present business case to decision board for approval and prioritization

Pull Model

- Establish process scouts with deep RPA knowledge
- Screening of processes for suitable candidates (e.g. through process pattern analysis and/or interviews with process experts & owners)
- Identify potential candidates (longlist)
- Validate with process owners and determine business case metrics (shortlist)
- present business case to decision board for approval and prioritization

CoE Dimension 3: Service Delivery Model

1

2

3

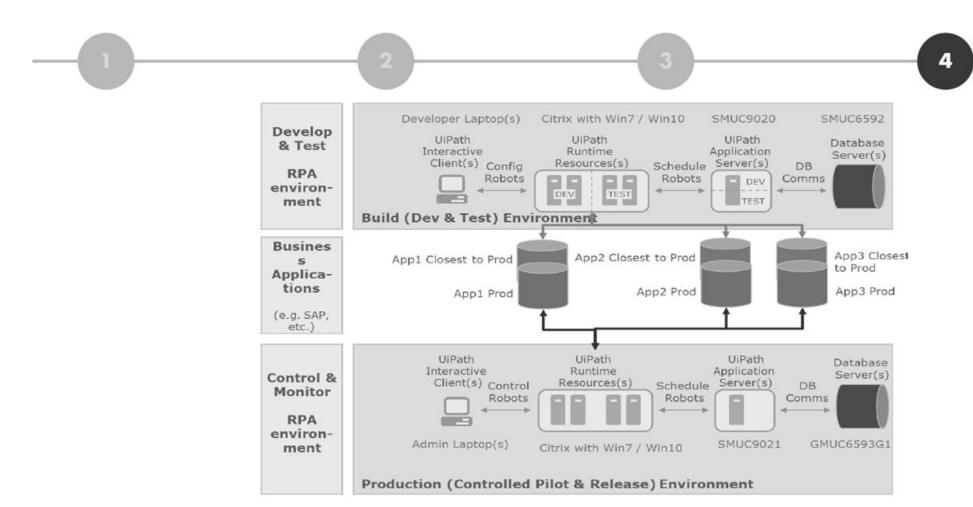
Service Delivery Model

Internal Enablement

- Employees get a basis RPA-Training for 3-days and a "work shadowing" approach for their first automated process
- After the first automation with an expert, the employees automate their own processes according to the trained guidelines
- People use their knowledge to optimize new processes for automation

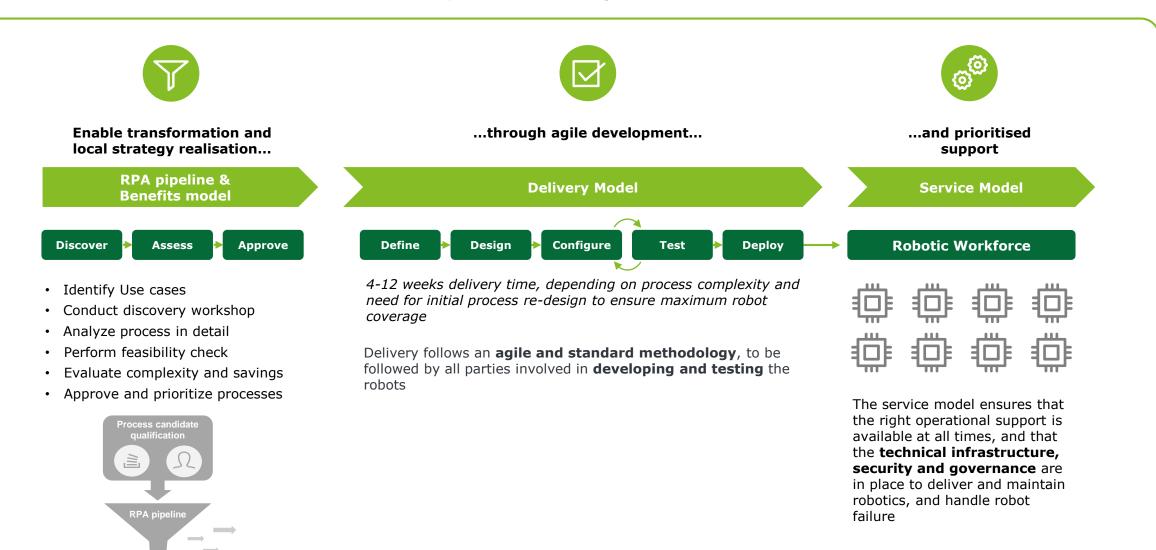
Extended work-bench

- External developer are responsible for the automation of processes
- Number of developers can be easily adjusted to the number of processes for automation
- Documentation and process flows can still be prepared internally



Deloitte 2019

24


CoE Dimension 4: IT-Landscape

IT-Landscape ———

Robotics Process Selection, Delivery and Management - Overview

Q&A

Deloitte.

