Web Engineering & IT Solutions PT
Apply Icon

Trends in Data Science (elective)

level of course unit


Learning outcomes of course unit

The following learning outcomes are developed in the course:

- Students are familiar with current thematic trends in the field of data science.
- Students are familiar with current technological developments in the field of data science.
- Students are familiar with current practical issues in the field of data science.

prerequisites and co-requisites


course contents

The contents of this course are not set, but will be adapted to the current prevailing trends. Content examples may include:

- New technologies in the field of Big Data Processing
- Trends in programming languages in data analysis
- New concepts of data processing (e.g. Data Lake)
- New questions in the field of data science research
- New questions in data science practice

recommended or required reading

Due to the changeability of the content, only a few web sources are listed here as examples, which are currently strongly represented in the area of Data Science Trends:
- Medium (2020): Towards Data Science (Ed. 1), online, https://towardsdatascience.com/.
- KDNuggets (2020): Knowledge Discovery Nuggets (Ed. 1), online, https://www.kdnuggets.com/.

assessment methods and criteria

Seminar thesis

language of instruction


number of ECTS credits allocated


eLearning quota in percent


course-hours-per-week (chw)


planned learning activities and teaching methods

The following methods are used:

- Lecture with discussion
- Interactive workshop

semester/trimester when the course unit is delivered


name of lecturer(s)

Prof. (FH) Dipl.-Inf. Karsten Böhm

year of study


recommended optional program components


course unit code


type of course unit

integrated lecture

mode of delivery